Monday, December 17, 2012

FEEL OF THE AIRPLANE

The ability to sense a flight condition, without relying
on cockpit instrumentation, is often called “feel of the
airplane,” but senses in addition to “feel” are involved.
Sounds inherent to flight are an important sense in
developing “feel.” The air that rushes past the modern
light plane cockpit/cabin is often masked by
soundproofing, but it can still be heard. When the
level of sound increases, it indicates that airspeed is
increasing. Also, the powerplant emits distinctive
sound patterns in different conditions of flight. The
sound of the engine in cruise flight may be different
from that in a climb, and different again from that in
a dive. When power is used in fixed-pitch propeller
airplanes, the loss of r.p.m. is particularly noticeable.
The amount of noise that can be heard will
depend on how much the slipstream masks it out.
But the relationship between slipstream noise and
powerplant noise aids the pilot in estimating not
only the present airspeed but the trend of the airspeed.
There are three sources of actual “feel” that are very
important to the pilot. One is the pilot’s own body as
it responds to forces of acceleration. The “G” loads
imposed on the airframe are also felt by the pilot.
Centripetal accelerations force the pilot down into the
seat or raise the pilot against the seat belt. Radial
accelerations, as they produce slips or skids of the airframe,
shift the pilot from side to side in the seat.
These forces need not be strong, only perceptible by
the pilot to be useful. An accomplished pilot who has
excellent “feel” for the airplane will be able to detect
even the minutest change.
The response of the aileron and rudder controls to the
pilot’s touch is another element of “feel,” and is one
that provides direct information concerning airspeed.
As previously stated, control surfaces move in the
airstream and meet resistance proportional to the
speed of the airstream. When the airstream is fast, the
controls are stiff and hard to move. When the airstream
is slow, the controls move easily, but must be deflected
a greater distance. The pressure that must be exerted
on the controls to effect a desired result, and the lag
between their movement and the response of the airplane,
becomes greater as airspeed decreases.
Another type of “feel” comes to the pilot through the
airframe. It consists mainly of vibration. An example
is the aerodynamic buffeting and shaking that precedes
a stall.
Kinesthesia, or the sensing of changes in direction or
speed of motion, is one of the most important senses a
pilot can develop. When properly developed, kinesthesia
can warn the pilot of changes in speed and/or
the beginning of a settling or mushing of the airplane.
The senses that contribute to “feel” of the airplane are
inherent in every person. However, “feel” must be
developed. The flight instructor should direct the
beginning pilot to be attuned to these senses and teach
an awareness of their meaning as it relates to various
conditions of flight. To do this effectively, the flight
instructor must fully understand the difference
between perceiving something and merely noticing it.
It is a well established fact that the pilot who develops
a “feel” for the airplane early in flight training will
have little difficulty with advanced flight maneuvers.

ATTITUDE FLYING


In contact (VFR) flying, flying by attitude means visually
establishing the airplane’s attitude with reference
to the natural horizon. [Figure 3-1] Attitude is the
angular difference measured between an airplane’s
axis and the line of the Earth’s horizon. Pitch attitude
is the angle formed by the longitudinal axis, and bank
attitude is the angle formed by the lateral axis.
Rotation about the airplane’s vertical axis (yaw) is
termed an attitude relative to the airplane’s flightpath,
but not relative to the natural horizon.
In attitude flying, airplane control is composed of four
components: pitch control, bank control, power control,
and trim.

• Pitch control is the control of the airplane about
the lateral axis by using the elevator to raise and
lower the nose in relation to the natural horizon.



• Bank control is control of the airplane about the longitudinal
axis by use of the ailerons to attain a desired
bank angle in relation to the natural horizon.




• Power control is used when the flight situation
indicates a need for a change in thrust.
• Trim is used to relieve all possible control pressures
held after a desired attitude has been
attained.
The primary rule of attitude flying is:
ATTITUDE + POWER = PERFORMANCE
Credit: faa-h-8083-3a

No comments:

Post a Comment